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Abstract

Global agricultural practices emphasize the demand for environmentally friendly and sustainable 

production strategies. Therefore, this study investigated the impact of processed red clay (PRC), an 

eco-friendly material derived from red clay, and a microbial fertilizer containing Lactobacillus 

fermentum (MFcL) on tomato growth, fruit quality levels, and soil properties. Tomatoes were 

transplanted and cultivated in open-field experiments. PRC, MFcL, and PRC+MFcL treatments were 

applied at 500 mL·plant
-1

 four times at seven-day intervals. The chlorophyll content of tomato leaves 

decreased over time, with MFcL significantly affecting the chlorophyll content and photosynthetic 

quantum yield (Fv/Fm). Significant differences in certain fruit growth traits, including the fruit 

width, weight, and fruit shape index, were observed among the treatments. Significant variations (p 

< 0.05) in the total yield and fruit cracking percentage were also found between the non-fertilizer 

(NF) and PRC treatments. The application of PRC significantly reduced the fruit cracking percentage 

and enhanced the crude protein and fat content of the fruits compared to the NF treatment. In 

addition, MFcL significantly increased the soil-available phosphorus content and decreased pH 

levels, and PRC+MFcL promoted rhizobacterial growth, showcasing the potential of these biofertilizer 

treatments. The combined treatment of PRC and MFcL proved effective for growing tomatoes in 

open-field conditions. Further research should explore various PRC and microorganism combinations 

to gain a comprehensive understanding and to assess the potential of their rational application to 

crops.
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Introduction

Tomato (Solanum lycopersicum L.), one of the most important vegetable crops, is cultivated extensively worldwide 

(Quinet et al., 2019) with an annual production of approximately 180 million tonnes (http://faostat.fao.org). Tomatoes 

offer a wealth of nutritional benefits, containing significant amounts of dietary fiber, vitamins, sugars, lipids, proteins, 

minerals, and various antioxidant molecules (George, 2004; de Alvarenga et al., 2017; Peixoto et al., 2017). Additionally, 

tomatoes are increasingly in demand due to their numerous health benefits, including their antioxidant, anti-inflammatory, 

antiallergenic, and anti-cancer properties (Raiola et al., 2014; Coyago-Cruz et al., 2017; Kaur et al., 2018; Ryu et al., 

2019). The quality of tomato fruits is influenced by a range of factors, such as the variety, growth environment, and 

growth stage (Diouf et al., 2018). Consequently, agricultural systems have adopted various strategies to produce 

high-quality tomatoes, including the engineering of biofortified seeds or fruits that contain essential minerals for human 

consumption (Xu et al., 2022). These strategies aim not only to satisfy hunger and provide necessary nutrients to humans 

but also to prevent nutrition-related diseases while also enhancing the physical and mental well-being of consumers 

(Menrad, 2003). Quality factors, such as the size, firmness, color, taste, and nutritional content, are important criteria 

related to the successful marketing of tomato fruits (Helyes et al., 2006). 

Fertilization impacts tomato yields and quality levels; traditionally, these crops are primarily cultivated by broadcasting 

inorganic fertilizers in several fertigation steps (Brunetti et al., 2019). Conventional farming systems rely heavily on 

inorganic fertilizers, which can compromise the environment and human health (Adhikari et al., 2018). The current global 

situation strongly emphasizes the need for eco-friendly agricultural practices to ensure sustainable food production 

(Bautista et al., 2020). Thus, there is an urgent need to develop environmentally friendly agricultural practices to address 

these challenges and ensure sustainable food production. This includes the implementation of live bioeffectors, abiotic 

bioeffectors and biofertilizers (Dudás et al., 2017). Silicon (Si) fertilizers, whether organic or inorganic, are recognized as 

high-quality and eco-friendly options that offer cost-effective benefits in agriculture owing to their non-corrosive and 

pollution-free traits (Tayade et al., 2022). Moreover, Si fertilizers play a beneficial role in regulating the soil pH and 

enhancing the uptake of both macro and micronutrients, especially when sourced from slag or Si-containing mineral ores 

(Liang et al., 2015).

Red clay covers 10% of the earth’s surface and is a soil type predominately found in the Republic of Korea (Jung et al., 

2014). The main component of red clay is SiO2, and this soil type exhibits a multi-layered honeycomb structure with an 

extensive surface area (Hwang, 2000; Yang et al., 2020). The agricultural field has reported red clay availability (Kim et 

al., 2014); however, the prominent components that constitute red clay are insoluble and exhibit limited absorption in soil 

and plants, even when used as a powder (Seo et al., 2014a). Fortunately, processed red clay (PRC; Patent #0886082, 

Republic of Korea) is designed to remove impurities and enhance mineral bioavailability and to improve soil fertility and 

microbial activity (Jung et al., 2014; Yoon et al., 2016). Biofertilization utilizes plant and animal wastes to enrich soil with 

organic matter and nutrients, employing microorganisms to metabolize these by-products for enhanced absorption by 

plant roots (Montesdeoca-Flores et al., 2024). Certain types of lactic acid bacteria, such as Lactobacillus fermentum, are 

renowned biofertilizers for enriching agriculture as they can solubilize minerals such as silicates and phosphates (Jo et al., 

2017; Kalayu, 2019; Bist et al., 2020). L. fermentum, a gram-positive bacterium of the Lactobacillus genus reportedly 

enhances and fortifies the immune response and prevents community-acquired gastrointestinal and upper respiratory 

infections (Naghmouchi et al., 2020). Research is ongoing to utilize probiotics in various ways beyond food fermentation, 
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but their use in conjunction with crop cultivation remains very limited (Jo et al., 2017). Prior studies have explored the 

quality levels of radishes and cabbages cultivated with PRC (Seo et al., 2014b, 2015) and have reported the quality of eel 

(Anguilla japonica) after the application of PRC (Seo et al., 2014a). The effects of PRC on diesel bioremediation in soil 

bacterial communities and on the molecular mechanisms that enhance bacterial growth in hexadecane have also been 

studied (Jung et al., 2014, 2015). However, no previous studies have investigated applications of PRC in tomato 

cultivation or its potential effects on growth, fruit quality outcomes, and soil analysis findings. 

This study aimed to explore the potential of sustainable tomato cultivation and production by minimizing the use of 

conventional chemical fertilizers and compost through the application of PRC, an eco-friendly material. The research 

analyzed the impact of PRC and microbial fertilizers on the growth, yield, quality of tomatoes, and soil properties. 

Another goal here is to investigate the synergistic effects between these factors, aiming to ascertain their potential as 

important aspects of eco-friendly agriculture.

Materials and Methods

Materials and experimental design

This study utilized a patented method (Patent# 0886082, Republic of Korea) to produce a material by blending red clay 

with 2M NaOH and heating it to 1200°C for 3 h (Ajeon Heating Industrial Co., Korea). This process improves the 

solubility of SiO2 in a colloidal form, as confirmed by an analysis using an inductively coupled plasma-optical emission 

spectrometer (DV3300, Perkin Elmer, USA). The resulting material was ground to 20–50 µm according to Jung et al. 

(2014) and Yoon et al. (2016). The chemical composition of PRC consisted of SiO2 (31.1%), Na2O (25.6%), Al2O3 

(19.0%), Fe2O3 (7.47%), K2O (1.30%), CaO (0.95%), TiO2 (0.94%), MgO (0.73%), and other materials (13.91%). The 

study also utilized a brown liquid formulation known as microbial fertilizer, which contains Lactobacillus fermentum 

(MFcL). This organic agricultural material is patented under patent #10-2000-0023186 in the Republic of Korea.

 Seeds of the ‘Sinheuksu’ tomato (Solanum lycopersicum L.), purchased from Asiaseed Co. Ltd. (Seoul, Korea), were 

planted individually in seeding trays in a greenhouse. Four-week-old seedlings were transplanted to the field on May 18, 

2015. The experiment lasted 58 days and was conducted at an agricultural research farm of Dongguk University 

(Siksa-dong, Ilsandong-gu, Goyang-si, Gyeonggi-do, Korea; Location: 37° 68' 01.31” N latitude 126°, 80' 35.48” E 

longitude). The average minimum temperature recorded during the experiment was 13.0°C, while the average maximum 

temperature was 27.9°C (Fig. 1A). The total precipitation recorded was 37.3 mm, and the average humidity was 61% 

(www.kma.go.kr). The soil chemistry of the experimental site prior to planting was as follows: pH, 7.0; electrical 

conductivity (EC), 0.34 dS·m
-1

; organic matter (OM), 6 g·kg
-1

; available phosphorus (Av. P2O5), 47 mg·kg
-1

; available 

silicon dioxide (Av. SiO2), 187 mg·kg
-1

; calcium (Ca
2+

) 5.8 cmol
+
·kg

-1
, magnesium (Mg

2+
), 2.9 cmol

+
·kg

-1
; potassium 

(K
+
), 0.27 cmol

+
kg

-1
; and total nitrogen (TN) 0.04%.

The experimental design was a completely randomized design (CRD) with three replications (Fig. 1B). Tomato 

seedlings were planted in plots (1.8 m × 2.4 m), and each plot contained six plants, with two of them serving as buffer 

zones to prevent contamination. The basal fertilizer used was compost (1,000 kg·10a
-1

) applied before plowing, and 

nitrogen fertilizer (Urea 8.8N–0P–0K) was top-dressed (NIAST, 2010b). The treatments were applied four times at 
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Fig. 1. Mean air temperature and precipitation during the experimental period of May 1 to July 24 (2015) at an agriculture 
research center at Dongguk University (A), and experimental field design of each plot size of 1.8 m × 2.4 m (B), Black 
square: buffer area, NF: non-fertilizer (only water: 500 mL); PRC: processed red-clay (200-fold dilution: 500 mL); MFcL: 
microbial fertilizer containing L. fermentum (250-fold dilution: 500 mL), PRC+MFcL: PRC (200-fold dilution: 250 mL) + 
MFcL (250-fold dilution: 250 mL).

seven-day intervals using three different solutions: non-fertilizer (NF, only water), PRC (diluted 200-fold), and MFcL 

(diluted 250-fold). 

Chlorophyll fluorescence and chlorophyll content of leaves 

Chlorophyll fluorescence was measured four times at seven-day intervals between 10 am and 12 pm, 14 days after the 

treatment (DAT). The measurements were taken on the third youngest attached leaf and were done on three plants at 

each treatment. A portable fluorometer (Opti-sciences OSI 30p, UK) was used to measure chlorophyll fluorescence 

following a 20-min period of dark adaptation. The minimal fluorescence (Fo), maximum fluorescence (Fm), and variable 

fluorescence (Fv/Fm) values were measured according to a method described by Baker (2008).

Tomato leaves were collected from each treatment between the third and fourth divisions and were cut into 1 mm pieces. 

Briefly, an amount of 0.1 g of fresh leaves was incubated in 80 mL of 80% (v/v) acetone in the dark at 4°C for seven days. 

The absorbance was measured using a UV/VIS spectrometer (UV-2100, Shimadzu, Japan) at 663 nm, 645 nm, and 

470 nm. The chlorophyll and carotenoid contents were calculated using the equations provided by Arnon (1949) and 

Lichtenthaler (1987). The chlorophyll and carotenoid contents were calculated using the following equations:
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Chlorophyll  ×


×




Chlorophyll   ×


 ×




Carotenoid 


×


× chlorophyll × chlorophyll 

Tomatoes growth characteristics and fruit cracking (%)

After 58 days transplanting, we harvested the fruits when they reached the red stage (when 90% of the fruit surface 

exhibited red coloration, following the ripening criteria for tomatoes) as described by Cantwell (2000). Data were taken 

from four plants for every three replications in accordance with the Agricultural Science and Technology Analysis 

Standard (RDA, 2012). All harvested fruits were analyzed for growth characteristics, specifically for the fruit length, 

width, weight, fruit shape index (FSI), yield, and cracking percentage. Fruit length (mm) and width (mm) were measured 

using Vernier calipers (CD-15CP, Mitutoyo Corp., Japan), while FSI was determined as the ratio of the fruit length to the 

fruit width. To investigate the incidence of fruit cracking, the harvested fruits were visually inspected and sorted into two 

categories: normal and cracked. The cracked fruits were further categorized based on their appearance, which included 

radial, concentric, irregular, and a category termed multiple type. The rate of fruit cracking (%) was determined using the 

following formula: 

Fruit cracking percentage   Total fruit weight
Weight of cracked fruit ×

Quality analysis of the tomato fruits

The moisture content and total soluble solids (TSS) were measured in ten fruits for each treatment. Moisture content 

was determined by weighing the fruit before and after drying each one in an oven at 105°C for 5 h (AOAC, 1990). TSS 

was measured using a digital handheld refractometer (PAL-3, Atago, Japan).

The total glucose and fructose contents were analyzed by means of an HPLC device (Shiseido Nanospace SI-2, Tokyo, 

Japan) equipped with a Unison UK-Amino column (250 mm × 3.0 mm, Imtakt Co. USA). The HPLC instrument was 

equipped with a RI detector (Shodex, Japan). The sample (0.1 g) in each case was dissolved in a solution containing H2O: 

ethanol (EtOH) (1:1) at a volume of 20 mL, followed by an ultrasonic treatment at 80°C for 30 min. The resulting mixture 

was centrifuged at 3000 rpm and 25°C and then filtered through a 0.45 μm syringe filter. The mobile phase consisted of 

90% acetonitrile, and the column was maintained at a temperature of 55°C. The flow rate was set to 400 µL·min
-1

. 

The crude fat and protein contents were analyzed using the AOAC method (2005). Crude fat was extracted and 

quantified with dimethyl ether using an analyzer (Soxtec 2050 Analyzer Unit, FOSS Tecator, USA), while protein was 

analyzed using a protein extractor (2300 Kjeltec Analyzer Unit, FOSS Tecator, USA) through the micro-Kjeldahl 

method.

The amino acids were extracted from the proteins using the ninhydrin post-column reaction method in conjunction with 

ion exchange chromatography. This method was modified from the AOAC method (2005). The amino acid was obtained 

using an analyzer (L-8900, Hitachi High Technologies Corporation, Japan). The sample (0.2 g) was mixed with 20 mL of 
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6 N HCl in digestion tubes, vortexed for 1 min, and then hydrolyzed for 22 h at 110°C for further analysis. The extract was 

concentrated using a vacuum concentrator (CCA-1111-CE, EYELA, Unit C Bohemia, USA) and then diluted to a final 

volume of 25 mL with a 0.2 N sodium citrate buffer (pH 4.2). The solution was filtered through a 0.45 µm nylon syringe 

filter (Whatman Inc., USA) and subsequently analyzed using a cation exchange column (60 mm × 4.6 id mm). The 

column temperature was set to 57°C, and the reaction temperature was set to 135°C. The flow rate was 0.4 mL·min
-1

 and 

the injection volume was 20 μL. The analysis was conducted using a UV/Vis detector, measuring 440 nm and 570 nm. 

Amino acids were eluted using ninhydrin, ninhydrin buffer solution, and mobile phase solution (PH-1, PH-2, PH-3, PH-4 

and PH-RG). 

Soil sampling and analyses

The soil samples were collected and analyzed following the standards outlined by NIAST (2010a). The soil samples 

were collected in triplicate before transplanting and after harvesting. Each soil sample was taken from a depth of 20 cm 

using an auger and represented a composite of ten cores collected from each treatment. The soil analyses were conducted 

on air-dried samples that were sieved through a 2-mm mesh. Soil pH was measured by a pH meter based on a soil/distilled 

water (w/v) mixture at a ratio of 1:5 and EC was measured in a soil/water mixture (1:5) using an electromagnetic device. 

OM was analyzed using the Tyurin method (Tyurin, 1931). TN was measured using the Kjeldahl method (Kirk, 1950). 

Av. P2O5 was measured using the Lancaster method (Alban et al., 1964). The concentration of Av. SiO2 was determined 

by measuring the absorbance at a wavelength of 700 nm using a 1 N NaOAc (pH 4.0) buffer. The exchangeable cations 

in the filtrate were extracted using 1N NH4OAc and then analyzed with an ICP-OES spectrometer (Optima 8300, Perkin 

Elmer, USA). 

The soil microbe density was analyzed using the soil dilution plate method (Clark, 1965) to determine the population of 

bacteria and the actinomycetes in the soil. The soil samples were collected and stored in a cooler with ice. The samples 

were diluted with distilled water and shaken on a shaker for 10 min. Yeast glucose agar was used as a general medium for 

bacterial growth, while starch casein agar supplemented with 30 mL of streptomycin was employed to cultivate the 

actinomycetes. The plates were incubated for three to five days at 28±2°C for the bacteria and for seven days at the same 

temperature for the actinomycetes. The observer counted the number of colonies on each plate manually using a colony 

counter. The values for bacteria and actinomycetes were expressed as colony-forming units per gram of dry soil 

(CFU·g
-1

).

Statistical analysis

A one-way analysis of variance (ANOVA) was used to analyze the data, and Duncan’s multiple range test (DMRT) 

comparisons (p < 0.05) were conducted to assess significant means using SPSS 28.0 (IBM Corp., Armonk, USA).

Results

Chlorophyll content and photosynthetic efficiency of leaves

The levels of chlorophyll and carotenoid content, measured at seven-day intervals starting from 14 DAT, showed a 
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Fig. 2. Effects of different treatments on the chlorophyll a (A), chlorophyll b (B), and carotenoid (C) contents and changes 
in the maximum quantum yield (Fv/Fm) (D) for tomatoes cultivated in an open field for 35 days after each of the different 
treatments (DAT). Data represent the mean ± SD. Asterisks on the bar indicate significant difference according to 
Duncan’s multiple range test (DMRT) (

*
p < 0.05, 

**
p < 0.01 and 

***
p < 0.001, n = 6). NF: non-fertilizer (only water: 500 

mL); PRC: processed red-clay (200-fold dilution: 500 mL); MFcL: microbial fertilizer containing L. fermentum (250-fold 
dilution: 500 mL), PRC+MFcL: PRC (200-fold dilution: 250 mL) + MFcL (250-fold dilution: 250 mL).

gradual decrease over time (Fig. 2A-2C). Notably, at 35 DAT, just before harvesting the tomatoes, the MFcL group 

demonstrated significantly higher values compared to all other experimental groups: 6.81 mg·g
-1

FW for chlorophyll a 

(Fig. 2A), 3.46 mg·g
-1

FW for chlorophyll b (Fig. 2B), and 1.07 mg·g
-1

FW for carotenoids (Fig. 2C). In particular, the 

carotenoid content at 35 DAT exhibited values exceeding 1.0 in MFcL and PRC+MFcL, with 31.65% and 19.52% higher 

values than NF, respectively. The range of observed leaf fluorescence efficiency values was 0.76–0.81. Although there 

were no differences in fluorescence efficiency values among the treatments at 14 DAT, statistical differences were 

observed 21 DAT days. MFcL maintained a value of approximately 0.81 (Fig. 2D). 
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Table 1. Comparative analysis of tomato fruit characteristics as affected by the different treatments

Treatments
z

Length (mm) Width (mm) Fresh weight (g) Dry weight (g) FSI

NF 46.10 a
y

52.09 a 76.88 a 1.01 a 0.89 c

PRC 46.34 a 50.28 ab 71.89 ab 0.92 a 0.92 a

MFcL 45.49 a 50.63 ab 71.17 ab 1.12 a 0.90 bc

PRC+MFcL 45.40 a 49.69 b 68.70 b 0.91 a 0.91 ab

z
NF: non-fertilizer (only water: 500 mL); PRC: processed red-clay (200-fold dilution: 500 mL); MFcL: microbial fertilizer containing L. 

fermentum (250-fold dilution: 500 mL), PRC+MFcL: PRC (200-fold dilution: 250 mL) + MFcL (250-fold dilution: 250 mL).
y
Different letters in a column indicate significant differences between the treatments according to DMRT (p < 0.05).

Fig. 3. Number of fruits per plant and fruit cracking percentage (%) according to the different treatments. Data represent 
the mean ± SD. Different letters on a bar indicate significant differences according to Duncan’s multiple range test (DMRT) 
(p < 0.05, n = 3) NF: non-fertilizer (only water: 500 mL); PRC: processed red-clay (200-fold dilution: 500 mL); MFcL: 
microbial fertilizer containing L. fermentum (250-fold dilution: 500 mL), PRC+MFcL: PRC (200-fold dilution: 250 mL) + 
MFcL (250-fold dilution: 250 mL).

Growth characteristics and fruit cracking (%)

The results of the fruit growth traits of the fruit length, width, weight, and FSI of the tomatoes harvested after treatment 

with PRC and MFcL are presented in Table 1. Although the tomato length exhibited no significant differences among the 

treatments, there was a notable decrease of approximately 4.6% in the fruit width within the MFcL compared to the NF. 

Similarly, the fruit weight demonstrated a tendency to decrease in MFcL, being approximately 10.6% lower than NF. 

Significant (p < 0.05) differences were observed in FSI among the treatments, with this value being lowest in NF (0.89). 

In the PRC and PRC+MFcL cases, it increased by 4.3% and 3.2%, respectively, compared to NF. However, MFcL did not 

show a significant difference compared to NF.

Concerning the number of fruits, NF resulted in approximately four more fruits compared to using PRC and MFcL 

alone (Fig. 3). However, despite the increased numbers of fruit, the percentage of cracking in NF was approximately eight 

times higher than that of PRC. 
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Fig. 4. Effects of different treatments on the moisture content (A), TSS (B) and glucose (C), fructose (p  < 0.05) (D), crude 
fat (p < 0.001) (E), and crude protein (p < 0.001) (F) contents of tomatoes cultivated in an open field for 35 days after 
different treatments. Data represent the mean ± SD. Different letters (s) on a bar indicate significant differences 
according to DMRT (p < 0.05, A-B: n = 10; C-F: n = 3) NF: non-fertilizer (only water: 500 mL); PRC: processed red-clay 
(200-fold dilution: 500 mL); MFcL: microbial fertilizer containing L. fermentum (250-fold dilution: 500 mL), PRC+MFcL: 
PRC (200-fold dilution: 250 mL) + MFcL (250-fold dilution: 250 mL).

Quality analysis of tomato fruits

No significant differences were observed in the moisture content and TSS of the fruits among the treatments. However, 

the moisture content of the tomatoes was approximately between 93 and 94% (Fig. 4A), while the TSS was in the range 

of 5.1–5.7 °Brix (Fig. 4B). A glucose content analysis showed no significant differences among the treatments (Fig. 4C), 

whereas the fructose content exhibited an increase in the MFcL case (Fig. 4D). PRC demonstrated a tendency to decrease 

by 0.93 mg·g
-1 

compared to NF. Furthermore, when MFcL was combined with PRC, the fructose content increased by 
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Table 2. Free amino acid contents of tomatoes according to the different treatment unit: (mg·g
-1
)

Treatments
z

NF PRC MFcL PRC+MFcL

Threonine 0.26 ab
y

0.27 a 0.25 b 0.27 a

Valine 0.15 a 0.23 a 0.22 a 0.23 a

Isoleucine 0.21 a 0.22 a 0.21 a 0.21 a

Leucine 0.33 b 0.35 a 0.34 b 0.35 a

Phenylalanine 0.29 a 0.31 a 0.31 a 0.31 a

Lysine 0.27 a 0.29 a 0.27 a 0.24 a

Histidine 0.11 b 0.11 a 0.11 b 0.11 a

Arginine 0.16 a 0.17 a 0.16 a 0.17 a

Aspartic acid 0.96 b 1.00 a 0.91 c 1.02 a

Serine 0.36 a 0.38 a 0.36 a 0.38 a

Glutamic acid 3.48 b 3.69 a 3.30 c 3.65 a

Glycine 0.17 a 0.21 a 0.20 a 0.21 a

Alanine 0.23 ab 0.24 ab 0.22 b 0.25 a

Tyrosine 0.37 a 0.40 a 0.39 a 0.39 a

Proline 0.05 b 0.05 b 0.05 b 0.07 a 

Total 7.51 b 7.93 a 7.30 b 7.85 a

z
NF: non-fertilizer (only water: 500 mL); PRC: processed red-clay (200-fold dilution: 500 mL); MFcL: microbial fertilizer containing L. 

fermentum (250-fold dilution: 500 mL), PRC+MFcL: PRC (200-fold dilution: 250 mL) + MFcL (250-fold dilution: 250 mL). 
y
Different letters in a column indicate significant differences between the treatments according to DMRT (p < 0.05).

approximately 1.2 mg·g
-1 

compared to when PRC was used alone. The crude fat content in PRC increased significantly to 

3.2 mg·g
-1

, a value approximately three times higher than NF (Fig. 4E). The total protein content of the tomatoes in the 

PRC treatment increased to 10.03 mg·g
-1
, higher than for NF and MFcL alone. The PRC+MFcL treatment also showed an 

increase in the protein content similar to that of the PRC treatment (Fig. 4F). 

Amino acid

The total amino acid content in PRC was increased significantly by approximately 6% compared to NF and 9% 

compared to MFcL alone, with a total value of 7.93 mg·g
-1 

(Table 2). An analysis of 15 amino acids revealed that in the 

PRC case, the contents of threonine, leucine, aspartic acid, and glutamic acid showed significant increases compared to 

those in the NF case. Additionally, the PRC+MFcL treatment showed the highest proline content.

Soil chemical and microbial properties 

In the comparison of NF, the treated soil samples exhibited higher levels of OM, Av. P2O5, and K
+
 and lower levels of 

EC, Av. SiO2, TN, Ca
2+

, and Mg
2+

 (Table 3). NF had a higher pH compared to MFcL. However, PRC+MFcL showed no 

significant difference in the pH compared to NF. The pH increased with the combined application of MFcL and PRC as 

opposed to that with MFcL alone. Notably, the changes in Av. P2O5 and Av. SiO2 content between NF and the treatments 

were pronounced in this study. In NF, Av. P2O5 and Av. SiO2 contents were 94.00 mg·kg
-1 

and 289.67 mg·kg
-1

,
 

respectively. Additionally, the Av. P2O5 content in MFcL increased by 49.7% compared to the NF case, reaching 140 
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Table 3. Soil chemical properties and effects on the soil microbial quantity after different treatments in open field tomatoes

Treatments
z

pH EC OM
Avail. 

P2O5

Avail. 

SiO2

TN
Exchangeable cations 

(cmolc·kg
-1
)

Bacteria 

(×10
6
)

Actinomycetes 

(×10
5
)

(1:5) (dS·m
-1
) (g·kg

-1
) (mg·kg

-1
) (%) Ca Mg K (CFU·g

-1
)

NF 6.60 a
y

0.86 a 6.67 c   94.00 c 289.67 a 0.08 a 6.29 a 2.80 a 0.32 c 16.33 b 32.00 a

PRC 6.43 b 0.68 b 8.00 b   95.67 b 254.33 b 0.07 c 5.56 b 2.60 b 0.30 d 21.33 ab 17.33 c

MFcL 6.00 c 0.69 b 8.00 b 140.67 a 212.00 d 0.06 c 4.53 d 1.90 d 0.36 a 26.33 a 24.33 b

PRC+MFcL 6.57 a 0.62 c 9.00 a 141.33 a 243.67 c 0.07 b 5.23 c 2.07 c 0.35 b 25.33 a 28.67 ab
z
NF: non-fertilizer (only water: 500 mL); PRC: processed red-clay (200-fold dilution: 500 mL); MFcL: microbial fertilizer containing L. 

fermentum (250-fold dilution: 500 mL), PRC+MFcL: PRC (200-fold dilution: 250 mL) + MFcL (250-fold dilution: 250 mL). 
y
Different letters in a column indicate significant differences between the treatments according to DMRT (p < 0.05).

mg·kg
-1
, whereas the Av. SiO2 content decreased by 26.8%. The exchangeable cation outcomes also exhibited differences 

between PRC and MFcL. Both showed a tendency to decrease in the Ca
2+ 

and Mg
2+

 contents compared to NF, while K
+
 

content in MFcL showed a slight increase of approximately 0.04 compared to that of NF. The application of MFcL alone 

or in combination with PRC resulted in bacteria populations 1.6 times higher than those in NF. In contrast, the quantities 

of actinomycetes were highest in NF at 32.00 CFU·g
-1

, while MFcL decreased them by 1.3 times and PRC by 1.8 times 

compared to NF. The combined application of MFcL and PRC resulted in a synergistic increase in the quantities of both 

bacteria and actinomycetes. 

Discussion

Chlorophyll content and photosynthetic efficiency of leaves

In this study, MFcL increased the chlorophyll content, which indicates a microbial influence. Notably, the inclusion of 

PRC was responsible for the lower chlorophyll content. This study found that MFcL increased the levels of both 

chlorophyll and carotenoids compared to NF. However, PRC had a limited influence on the chlorophyll content. 

Conversely, in this study, the combination of PRC and MFcL increased both the chlorophyll and carotenoid contents. 

According to Zhang et al. (2018), under non-stress conditions, a treatment with K2SiO3 showed no significant difference 

compared to a control group of tomatoes. However, a K2SiO3 treatment at a high concentration actually led to a decrease 

in the chlorophyll content (Cao et al., 2013). Vu et al. (2017) also reported that a silicate fertilizer treatment increased 

the chlorophyll content up to a certain concentration, noting also a decrease at high concentrations. Additionally, 

Cumplido-Nájera et al. (2019) observed a decrease in the chlorophyll content at high concentrations of K2SiO3. Such 

decreases in the chlorophyll content and increases in the carotenoid content are associated with plant tolerance and the 

physiological status of the plant under stress conditions (Abdel Latef and Chaoxing, 2011), with such phenomena similar 

to low-temperature stress and salinity conditions (Vasil’eva et al., 2003; Abdel Latef and Chaoxing, 2011; Gharbi et al., 

2018). The developmental stage of leaves and the environmental conditions influence carotenoid metabolism, and 

substances related to carotenoids support photosynthesis, photoprotection, and stress adaptation in leaves. Additionally, 

when Piriformospora indica is inoculated in tomatoes, there is an increase in the photosynthetic pigment content 

(Ghorbani et al., 2018). Similarly, an increase in the photosynthetic pigment content has been reported in mung beans 
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when treated with a Si solution and rhizobacteria inoculation (Mahmood et al., 2016). Beneficial bacteria that become 

established in a plant’s rhizosphere interact with the plant, aiding in the maintenance of chlorophyll and carotenoid 

pigments in crops during stressful conditions. These bacteria also regulate the levels of osmolytes, such as proline, soluble 

sugars, proteins, and amino acids, which improve the stability of the cell membranes, meaning that the bacteria assist 

plants in adapting to stressful environments (Qu et al., 2016; El-Esawi et al., 2018; Zhang et al., 2020). 

Fluorescence efficiency (Fv/Fm) is an indicator of various environmental forms of stress that can affect the physiological 

aspects of photosynthesis (Hong and Xu, 1999). Generally, a range of 0.78–0.84 indicates the healthiest state of plant 

growth (Kitajima and Butler, 1975), and this study found that the fluorescence efficiency ranged from 0.76 to 0.81. It was 

also found here that treating the rhizosphere with MFcL enhanced plant pigments compared to other treatments, stemming 

from the chlorophyll content and fluorescence efficiency. At 35 DAT, the Fv/Fm value in the PRC+MFcL case was 

significantly lower (0.78) compared to the other treatments, which can be assumed to act as a stress factor related to the 

increased carotenoid content. Based on the research findings of Strzałka et al. (2003), MFcL can cause increases in 

photosynthetic pigments, and the addition of MFcL in combination with PRC shows a more significant effect compared 

to that by PRC alone. However, this response was not observed in the single applications of PRC and MFcL, indicating 

that further research is needed to understand the synergistic effect of PRC and MFcL in tomato plants.

Growth characteristics and fruit cracking (%)

The analysis of the tomato fruit growth parameters revealed that the individual treatments with PRC and MFcL had no 

significant effects. However, in the combined treatment of PRC+MFcL, a decreasing trend in growth traits was found 

compared to NF. Additionally, the quantity and cracking percentage decreased in the PRC and MFcL treatments 

compared to the NF case, but the PRC+MFcL application increased the number of fruits per plant and the fruit cracking 

percentage. This result is similar to the findings of Kaloterakis et al. (2021), who reported that the application of silicon 

and Bacillus spp. or their combination during the cultivation of Phaseolus vulgaris did not have a significant effect on 

plants under non-stress conditions. These results were also in line with the findings of Mayak et al. (2004), who observed 

that inoculation with A. piechaudii ARV8 did not have a substantial effect on tomato plant growth under non-stress 

conditions. Kumar et al. (2020) found that under non-stress conditions, the application of plant-growth-promoting 

bacteria (PGPR) and silicon fertilization did not have significant effects. However, optimizing the interaction between 

these factors at specific concentrations may enhance plant growth. Weerahewa and David (2015) suggested that varying 

silicon fertilizer concentrations during different growth stages could impact tomato traits. Additionally, the growth 

conditions of the plants could affect the quality and metabolism of tomato fruit (Diouf et al., 2018). A FSI score close to 

1.0 indicates a round shape, and PRC exhibited round-shaped fruits. Besides the genetic traits, the shape of a tomato is also 

influenced by its cultivation environment (Lohar and Peat, 1998; Moon et al., 2015; Park et al., 2017). In particular, 

variations in the fruit quantity and biomass can affect the fruit shape in open-field cultivation (Le et al., 2018). Clay 

minerals are recognized for their ability to improve the physical and chemical properties of soils. Silicon contributes to the 

mechanical strengthening of plants by forming silicified elongated and short epidermal cells, a thick layer of silica 

beneath the cuticle, and complexes with organic compounds on the epidermal cell walls (Wang et al., 2017). The lowest 

number of cracked fruits in the PRC stems from the high absorption of minerals such as SiO2, NaO, and CaO by the plants. 

Various factors, such as the genetic makeup, cultivation method used, and climatic conditions influence the occurrence of 
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cracked tomatoes, leading to a decline in quality (Peet, 1992; Khadivi-Khub, 2015; Yang et al., 2016; Zhang et al., 2020). 

Pinedo-Guerrero et al. (2020) reported that a co-treatment with silicon nanoparticles (SiO2 NPs) and NaCl increases fruit 

firmness, thereby preventing fruit cracking. Additionally, the provision of Ca
2+

 can decrease the incidence of cracked 

fruits and other aspects of quality deterioration (Savvas et al., 2017; Bae et al., 2023). Mineral nutrition and cracking are 

closely related, especially with regard to the Ca
2+

 and B levels, as they are associated with pectin, a substance that 

contributes to the firmness of the tomato surface (Yang et al., 2016). 

In this study, we observed a decrease in the fruit size but an overall increase in the fruit yield in the PRC+MFcL 

treatment, suggesting its potential use in relation to these interactions in tomato plants. Thus, it is necessary to determine 

the optimal concentration levels for these types of interactions during PRC and MFcL applications. The results here 

suggest the need to conduct molecular research on the combined application of PRC and MFcL in tomato plants.

Quality compositions of the tomato fruits 

In this study, no significant differences were observed in the moisture contents of the tomato fruits. However, MFcL 

resulted in increased TSS, glucose, and fructose contents of the fruits compared to the NF and PRC treatments, while 

PRC+MFcL showed a tendency toward higher sugar content compared to PRC alone. The enhanced efficiency of 

potassium and phosphorus utilization in the roots resulted in phosphorus accumulation in the fruits, which likely 

contributed to the improvement of the fruits’ sugar levels (Go et al., 2023). Bona et al. (2018) observed that the glucose 

and fructose contents of tomato fruits increased when a mixture of mycorrhiza inoculum and bacterial suspension was 

used. Glucose and fructose contents significantly increase during the early stages of fruit development (Quinet et al., 

2019) and occur in equal quantities during fruit ripening (Oms-Oliu et al., 2011). The primary sugars that influence the 

sweetness of tomatoes are fructose, glucose, and sucrose, along with a small amount of starch. Kurina et al. (2021) noted 

that changes in the sugar content in cultivated tomatoes can vary based on genetic differences and growing conditions. 

Additionally, it has been observed that a salinity stress treatment leads to an increase in the sugar content in tomatoes (Sato 

et al., 2006; Flores et al., 2016; Marsic et al., 2018). The application of silicon alongside stress leads to an increase in both 

the TSS and sugar contents (Costan et al., 2020; Hu et al., 2023). Conversely, elevated silicon concentrations result in 

decreased glucose and fructose levels, even under conditions of water stress (Sánchez‐Rodríguez et al., 2012). From this 

evidence, it can be inferred that PRC influences the sugar content during the early stages of tomato development, with the 

potential effect of high concentrations persisting even with a 200-fold dilution of PRC. According to Pinedo-Guerrero et 

al. (2020), individual treatments of K2SiO3 and SiO2 NPs did not show significant effect on TSS. Likewise, Hu et al. 

(2023) reported no significant differences in glucose and fructose contents in tomatoes treated with 1.0 mM Na2SiO3. 

However, both studies observed an increase in the total protein content compared to the control, consistent with the 

findings here. An application of silicon to strawberry roots increased the protein content (Peris-Felipo et al., 2020), and in 

Zea mays, the protein content also increased with a nano-silica fertilizer treatment (Prihastanti et al., 2018). Application 

of PRC to radish and cabbage also resulted in a significant increase in the crude fat content in previous studies (Seo et al., 

2014b, 2015). In our study, the application of PRC had a limited effect on the sugar content, but its positive effects on 

crude protein and crude fat synthesis are associated with the silicon and mineral components present in PRC.
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Amino acid

The volatile compounds in tomatoes are derived from amino acids (Rambla et al., 2013), which are also associated with 

the plant’s defense response, and plants accumulate amino acids under stress conditions to enhance their stress resistance 

(Hayat et al., 2012; Sheng et al., 2017). Proline, in particular, is considered to be a stress indicator in plants and is primarily 

synthesized from glutamate during stress conditions (Delauney and Verma, 1993). Regulation of the proline content in 

plants by incorporating bacterial strains has been reported (Yoo et al., 2021). Additionally, Ullah et al. (2016) reported the 

protective effects of silicon and a mycorrhizal treatment on tomato plants. Salvioli et al. (2012) reported that the amino 

acid content can vary in tomato fruits during ripening and mycorrhizal colonization, also reporting the highest amino acid 

content in fruits treated with mycorrhizal. The increased levels of glutamic acid and aspartic acid in PRC are important for 

these amino acids in ripe fruits, while alanine and glycine contribute to sweetness, and phenylalanine and leucine enhance 

the bitterness of fruits (Solms, 1969; Zhu et al., 2018). Protein and amino acids have a significant impact on the taste and 

texture of fruits. Therefore, to improve the nutritional composition and quality of tomato fruits, the role of amino acids is 

crucial (Gremli, 1974; Snowden et al., 2015).

Soil chemical and microbial properties

Phosphate solubilization mechanisms by microorganisms typically involve acidification, the production of chelating 

metabolites, and redox activities (Lee et al., 2012). Phosphate solubility tends to increase with a decrease in the soil pH, 

as microbial activity coupled with the production of organic acids results in phosphorus solubilization (Satyaprakash et 

al., 2017; Kalayu, 2019). In a study by Kang et al. (2001), when phosphate-solubilizing microorganisms (Penicillium sp.) 

were cultured in rock phosphate media, the pH of the medium decreased and the addition of red clay reduced the pH 

further. However, the results of this study were different. These variations in phosphate solubilization mechanisms among 

microbial species can account for the differences observed (Lee et al., 2012). Although the exact mechanisms of 

phosphate solubilization between PRC and microorganisms are not well understood in this study, it is suggested that the 

co-application of PRC acted as a buffering agent to maintain a stable pH level. Phosphorus is an essential nutrient that 

plays a crucial role in various plant functions and in plant metabolism (Malhotra et al., 2018). Thus, ensuring an adequate 

supply of phosphorus is crucial for plants. An increase in the available phosphorus content in the soil is highly beneficial 

for plants and can positively impact their growth and productivity (Kumar et al., 2018).

Therefore, when treated with PRC, phosphorus acts as a buffer to maintain a stable pH level, which can positively 

impact crop growth and nutrient uptake in the soil (Schmidt et al., 2010; Dudás et al., 2017). In typical soils, phosphorus 

is fixed by cations such as Ca
2+

 and exists as complexes of calcium phosphate (Ca3PO4). In acidic soils, it forms aluminum 

phosphate (AlPO) and iron phosphate (FePO) by binding with Al
3+

 and Fe
3+

, respectively, resulting in their accumulation 

(Oliveira et al., 2009; Walpola and Yoon, 2012; Satyaprakash et al., 2017). Therefore, despite the abundance of inorganic 

and organic forms of phosphorus in the soil, they are mostly unavailable for plant uptake (Kalayu, 2019). The amount of 

phosphate that plants can utilize from applied phosphate fertilizers in the soil is typically low (Lee et al., 2012). In this 

study, the enhancement of Av. P2O5 in MFcL and PRC+MFcL can be attributed to the increased microbial influence. Soil 

microorganisms play a vital role in the transformation of insoluble phosphorus into soluble forms that can be readily 

utilized by plants, offering an environmentally friendly approach to improve phosphorus availability in the soil (Khan et 
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al., 2014). These findings suggest that the combined application of PRC and MFcL during the cultivation of tomatoes can 

effectively benefit plants during their growth and development. In our study, a soil analysis after harvesting the tomatoes 

showed the highest content of Av. P2O5 in the MFcL and PRC+MFcL treated plots. In contrast, the NF soil showed a 

higher Av. SiO2 content, suggesting the potential absorption of Av.SiO2 by the plants. Therefore, further research is 

needed to understand the detailed mechanisms of how SiO2 functions physiologically during tomato cultivation (Sun et 

al., 2023). 

Jung et al. (2014) reported that PRC promotes bacterial growth, which contradicts our findings. Indeed, PRC with a 

biofertilizer may have a synergistic effect to maximize the role of the biofertilizer to produce an environmentally friendly 

and sustainable crop (Shanthi, 2021). According to Jung et al. (2015), PRC, which contains only inorganic mineral 

compounds (i.e., SiO2, Al2O3, Fe2O3), exhibits unique characteristics as a biostimulant for bioremediation.

In conclusion, the PRC and MFcL treatments here had limited effects on the growth of tomato leaves and fruits. Both 

PRC and MFcL were found to be effective in reducing fruit cracking and producing more marketable fruits. The 

combined application of PRC and MFcL tended to increase the chlorophyll content. Additionally, PRC was found to 

increase the crude fat, crude protein and amino acid contents, which is beneficial considering that these components serve 

to produce high-quality tomato fruits. The soil analysis showed the highest content of available phosphorous and 

sufficient quantities of beneficial bacteria in the MFcL-treated plots; hence, the combined treatment of PRC and MFcL 

was considered to be effective for growing tomatoes in an open-field condition. This study provides a foundation for 

the utilization of microbial agents during tomato cultivation, though further research is recommended to explore the 

beneficial effects of PRC when used in conjunction with other microorganisms during the production of vegetable crops. 
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