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Abstract

In greenhouses, photosynthesis efficiency is a crucial factor for increasing crop production. Since 

plants use CO2 for photosynthesis, predicting CO2 concentration is helpful for improving photosynthetic 

efficiency. The objective of this study was to predict greenhouse CO2 concentration using a long 

short-term memory (LSTM) algorithm. In a greenhouse where mango trees (Mangifera indica L. 

cv. Irwin) were grown, temperature, relative humidity, solar radiation, atmospheric pressure, soil 

temperature, soil humidity, and CO2 concentration were measured using complex sensor modules. 

Nine sensors were installed in the greenhouse. The averages of environmental factors from the nine 

sensors were used as inputs, and the average CO2 concentration was used as an output. In this 

experiment, LSTM, one of the recurrent neural networks, predicted changes in CO2 concentration 

from the present to 2 h later using historical data. The data were measured every 10 min from 

February. 1, 2017 to May 31, 2018, and missing data were interpolated with a linear method and 

multilayer perceptron. In this study, LSTM predicted the 2-h change in CO2 concentrations at an 

interval of 10 min with adequate test accuracy (R2 = 0.78). Therefore, the trained LSTM can be used 

to predict the future CO2 concentration and applied to efficient CO2 enrichment for photosynthesis 

enhancement in greenhouses.

Additional key words: CO2 enrichment, deep learning, mango tree, photosynthesis, recurrent neural 

network

Introduction

Farmers actively control the growth environment, such as temperature, light, relative humidity, and 

CO2 concentration, using a greenhouse. Among the plant environmental factors, photosynthesis 

efficiency is a crucial factor for growing crops in greenhouses. To improve the productivity of cultivation, 

it is necessary to maximize photosynthesis of crops (Cock and Yoshida, 1973). Photosynthesis is 

influenced by variable environmental factors, such as temperature, relative humidity, and CO2 

concentration (Kaplan et al., 1980; Davison, 1991; Lawlor, 1995). Among the environmental factors, 

CO2 is consumed in the process of photosynthesis as a reactant, so an additional CO2 supply can 
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promote photosynthesis (Gifford and Rawson, 1994; Maroco et al., 2002). Therefore, control of CO2 concentration is important.

In light of this, studies have been conducted to maximize photosynthesis using CO2 fertilization (Oechel et al., 1994; 

Donohue et al., 2013; Lotfiomran et al., 2016). When CO2 is fertilized, it promotes crop growth and increases productivity 

(McGrath and Lobell, 2013). The amount of fertilized CO2 and the productivity of crops do not have a linear relation, so 

finding the optimal amount of CO2 is a matter of fact for precision agriculture (Linker et al., 1998; Kläring et al., 2007; 

Graamans et al., 2018). However, in greenhouse conditions, the CO2 concentration is affected both by structural factors 

such as the ventilation rate and by environmental factors such as temperature, so it is not easy to saturate the optimal CO2 

concentration (Boulard et al., 2002; Roy et al., 2002).

Individual photosynthetic properties of a crop can be measured using photosynthesis systems to determine the optimal 

amount of CO2 supply according to the growing environment (William et al., 1986; Sharma-Natu et al., 1998; Jung et al., 

2016). However, the crops make a canopy in most plant production systems. Since canopy photosynthesis is different 

from individual photosynthesis, modeling individual photosynthesis and applying it to a greenhouse make a disjunction 

with actual photosynthesis. In this case, the amount of consumed CO2 can be measured instead of canopy photosynthesis 

(Goto, 2012; Jung et al., 2016). In insulated spaces such as plant factories, there is little environmental change. Therefore, 

the CO2 consumption of the canopy can be measured easily, making efficient CO2 fertilization possible. However, 

environmental fluctuations within a greenhouse are more complicated than a plant factory since greenhouses are not 

completely insulated (Graamans et al., 2018). In addition, plant growth factors should be considered along with various 

greenhouse environments because CO2 concentrations are also affected by crop growth conditions. Therefore, it is not 

easy to predict the CO2 concentration of a greenhouse.

Recently, deep learning has been studied because of its ability to achieve high-level abstraction from raw data (Mnih et 

al., 2015; Silver et al., 2016). The base of a deep learning algorithm is an artificial neural network (ANN), and it has 

various structures depending on the algorithm. For weather data, ANNs have been used to analyze nonlinear relationships 

of the environment (Hu et al., 2016; Liu et al., 2016). In particular, estimation of greenhouse CO2 was also studied using 

ANNs (Moon et al., 2018b). In the previous study, it was verified that an ANN can be trained to find the relationship 

between CO2 concentrations and environmental factors. However, the estimation was only in contemporary conditions, 

so it was difficult to use for active control, such as CO2 fertilization.

As a part of deep learning, recurrent neural networks (RNNs) are used to analyze sequential data such as voice and video 

(Han et al., 2017; Wang et al., 2017; Zhao et al., 2018). In particular, among the RNN algorithms, long short-term memory 

(LSTM) has the advantage of analyzing data from a relatively long period (Greff et al., 2017). In greenhouse conditions, 

the electrical conductivity and ion concentrations of nutrient solutions were predicted using LSTM (Moon et al., 2018a, 

2019). Similar to root-zone factors, the CO2 concentration in greenhouses also is influenced by accumulated changes in 

other environmental factors. The objective of this study was to predict CO2 concentrations using environmental factors in 

greenhouses via LSTM.

Materials and Methods

Cultivation Conditions

A double-span arch-type plastic house (34.4 W × 30.0 L × 5.7 H, m, 1,032 m2) located in Boryeong, Korea (36°23'34"N, 
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126°29'12"E) was used for the experiment. The greenhouse-covering material consisted of 0.15-mm-thick polyolefin 

films. The light transmittance was approximately 92%. Since diverse experiments were carried out, the environmental 

changes varied (Fig. 1). In the winter season, the inside temperature was maintained at 251°C using a hot-water heating 

system. There were periods of low temperatures for flower bud differentiation during the cultivation. The ventilation 

system was automatically opened at a set point of 27°C. CO2 fertilization started on Dec 10, 2016. One hundred 4-year-old 

mango trees (Mangifera indica L. cv. Irwin) were planted in 0.8-m-diameter pots. The planting density was 6.25 

plant·m-2. The organic content of the soil ranged from 38 to 120 g·kg-1. A drip irrigation system was used for watering.

Data Collection

A complex sensor module developed by Korea Electronics Technology Institute (Seongnam, Korea) was used to 

measure environmental factors (Table 1). Nine sensor modules were evenly installed in the greenhouse. The sensor 

Fig. 1. Weekly average values of temperature, relative humidity, and PPFD in the greenhouse from Feb. 1, 2017 to May 31, 
2018. Zeros were excluded when radiation was averaged.

Table 1. Ranges of environmental data used as inputs of long short-term memory (LSTM). The values represent the 
averaged data measured by nine sensors in the greenhouse. PPFD was calculated using a conversion factor (54 
lx·µmol-1·m2·s)

Environmental data Range

Inside temperature (°C) 4.8 ‑ 44.2

Inside relative humidity (%) 22.1 ‑ 95.3

Inside atmospheric pressure (hPa) 992.6 ‑ 1,036.0

Inside PPFDz (µmol·m-2·s-1) 0.0 ‑ 1,210.9

Inside CO2 concentration (µmol·mol-1) 356.7 ‑ 2,583.4

Soil temperature (°C) 10.8 ‑ 35.4

Soil moisture content (%) 9.1 ‑ 35.4

Soil electrical conductivity (dS·m-1) 0.0 ‑ 0.5

Outside temperature (°C) ‑ 6.7 ‑ 35.2

Outside relative humidity (%) 0.0 ‑ 78.0

Outside atmospheric pressure (hPa) 994.2 ‑ 1,035.8

Wind direction (°) 0.0 ‑ 360.0

Wind velocity (m·s-1) 0.0 ‑ 27.0

zPPFD, photosynthetic photon flux density. 
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measured illumination and converted it into photosynthetic photon flux density (PPFD) using a conversion factor (54 

lx·µmol-1·m2·s). Greenhouse environmental data were measured every 10 min from February 2, 2017 to May 31, 2018. 

Weather data for the same period were gathered at Boryeong Meteorological Station.

LSTM

LSTM solved the vanishing gradient problem of RNNs, so LSTM can memorize long-period sequences (Hochreiter and 

Schmidhuber, 1997). The LSTM consists of a cell with several gates (Fig. 2). The symbols h and σ represent the input 

activation function and gate activation function, respectively. LSTM adds previous data to the cell state, so there is no 

vanishing gradient or exploding gradient problem. Computationally, LSTM accepts current input and previously processed 

output at the same time. The accepted values are operated at the gates. Processed information is saved in the cell state, so 

sequences can be memorized. Gates of LSTM are divided into three parts. The input gate determines how to select the 

input and output. The forget gate determines how much previous information should be forgotten. The output gate mixes 

the cell state with input data. LSTM yields the final output when the computation step reaches the predetermined time 

step.

An RNN has hidden layers similar to an ordinary ANN. Input and output activation functions were set to the hyperbolic 

tangent function, and the gate activation function was set to the sigmoidal function. The number of perceptrons was 

variously combined to determine the optimal structure. In this study, previous environmental data were used as input, and 

the average CO2 concentration of the nine sensors was used as output. The learning rate and the time step of LSTM were 

varied to determine the optimal value, and the output length was set to 12 (Fig. 3). AdamOptimizer was used to train the 

LSTM (Kingma and Ba, 2014). The hyperparameters for the LSTM and AdamOptimizer were set to empirically used 

values (Table 2). For regularization, layer normalization was also used (Ba et al., 2016). Generally, neural networks are set 

to minimize cost (Rumelhart et al., 1988). In this study, the mean squared error (MSE) instead of the root mean squared 

error (RMSE) was used as a cost for reducing computation. The coefficient of determination (R2) was used for training 

and test accuracy. RMSE was used for verifying model robustness. TensorFlow (v. 1.12.0) was used for computation 

(Abadi et al., 2016).

Fig. 2. A structure of long short-term memory (LSTM). I, inputs; O, outputs; C, cell states; h, tanh activation function; σ, 
sigmoidal activation function; t and t-1, current and previous times, respectively.
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Data Interpolation and Preprocessing

Missing data were filled using interpolation methods. Linear interpolation was used for the missing data with an interval 

of less than 30 min, while MLP was used for the missing data with longer intervals. Completely missing data, which 

cannot be inferred using other contemporary environmental factors, were filled with the data from 1 week prior. To train 

the LSTM, the data were normalized from 0 to 1 to improve training efficiency. The dataset was prepared according to the 

time step and output length. All datasets had an interval of 10 min and were periodically divided into training and test data. 

To prevent the test information from being included in the training data, the training dataset did not include the period of 

the test dataset. That is, the datasets were divided without overlapping. In this study, the number of datasets was 69,684, 

and five-fold cross validation was conducted using a training and test dataset.

Results and Discussion

The trained LSTM showed acceptable performance in the prediction of greenhouse CO2 concentrations. In this study, 

the optimal time step was 72 (720 min; data interval: 10 min), and the optimal learning rate was 0.01 (Fig. 4). The test 

accuracies tended to decrease with the extension of the time step. Various learning rates did not change the test accuracies 

except 0.001 and 0.04. The LSTM is known for solving the vanishing gradient problem in recurrent neural networks 

(Hochreiter and Schmidhuber, 1997). In particular, the LSTM can deal with >1,000 time steps in natural language 

Fig. 3. A conceptual diagram of long short-term memory training. The time step varied to find the optimal value, as shown 
in Fig. 4, and the output length was set to 12 with an interval of 2 h. Refer to Table 1 for details on the input factors.

Table 2. Hyperparameters for LSTM and AdamOptimizer

Parameter Value Description

β1 0.9 Exponential mass decay rate for the momentum estimates

β2 0.999 Exponential velocity decay rate for the momentum estimates

 0.0001 A constant for numerical stability

Dropout probability 0.1 Probability of dropping out units in the neural network

Forget bias 1.0 Probability of forgetting information in the previous dataset

Number of perceptrons 12 The number of perceptrons used for hidden layer of LSTM and FCz

zFully connected layers.
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processing (Wu et al., 2016). Therefore, the information exceeding 720 min was not meaningful for predicting greenhouse 

CO2 concentrations. In fact, CO2 concentrations change in a short time, so a 10-min interval could be too long for 

prediction (Lashof, 1989; Moon et al., 2018b). Therefore, a long time step with a short interval could yield higher accuracy. 

However, the trained LSTM with a time step of 72 and a 0.01 learning rate yielded an R2 of almost 0.8, and the accuracy 

was higher than the previous applications of LSTM (Rußwurm and Körner, 2017; Zhang et al., 2018; Moon et al., 2019). 

Since the highest accuracy was yielded with a time step of 72 and a 0.01 learning rate, subsequent experiments were 

conducted using the same hyperparameters.

For the validation, the average training accuracy and test accuracy of all five validations was R2 = 0.83 and 0.78, 

respectively (Fig. 5). The graph shows some variance, but the R2 and RMSE were adequate. The trained LSTM showed 

the tendency to underestimate the CO2 concentrations. CO2 concentrations in the range around 1,000 µmol·mol-1 
were 

especially underestimated. High CO2 concentrations usually occurred when CO2 was fertilized unnaturally, so they could 

not be predicted using only environmental factors. More various data such as controls, workbooks, or images could 

increase model accuracy (Kamilaris and Prenafeta-Boldú, 2018). In this study, plant growth data were not used for 

investigating whether the greenhouse environment could be predicted only with environment factors. Therefore, adding 

plant growth can improve model robustness because the greenhouse environment is disturbed by plants. The external CO2 

concentration is almost constant and may help a bit. Since the trained LSTM yielded a sequence of outputs using multiple 

kinds of inputs, conventional algorithms such as ARIMA models, multivariate regression, or multilayer perceptrons could 

not be trained in the same training condition.

A B

Fig. 4. R2 and root mean squared errors (RMSEs) of the test data at various time steps (A) and learning rates (B). Bars and 
solid lines represent R2 and RMSE, respectively.

A B

Fig. 5. Comparison of predicted and measured CO2 concentrations in the greenhouse for training (A) and test (B) data. The 
unit of RMSE is µmol·mol-1.
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For a seasonal comparison, the LSTM showed the best accuracy from July 5 to 11, 2017 (Fig. 6). The prediction had 

especially high variance in autumn from October 5 to 11, 2017. Generally, the predicted area showed the possibility of 

underestimating fertilized CO2. In particular, a previous pattern was repeated as outputs of LSTM. One of the 

characteristics of LSTM is to accept previous information, so it can be seen that the previous information had a more 

influential effect on the prediction prior to the inference of the future changes. Therefore, some generative models could 

be more effective than LSTM in the case of long-term prediction (Sutskever et al., 2014; Oord et al., 2016).

RMSEs of time-series outputs showed an increasing pattern; the lowest value was 19.257 and the highest value was 

65.297 (Fig. 7). Considering the range of CO2 concentrations, the RMSEs were not high. However, the RMSE of the last 

output is three times higher than the first output, so another cost function would be required to conduct regression using 

A

B

C

D

Fig. 6. Test of the long short-term memory by comparing measured and predicted CO2 concentrations in the greenhouse 
from April 5 to 11, 2017 (A), July 5 to 11, 2017 (B), October 5 to 11, 2017 (C), and January 5 to 11, 2018 (D). The unit 
of RMSE is µmol·mol-1 .
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the LSTM (Wen et al., 2015). The costs of outputs were calculated simultaneously, so the model can only deal with the 

sum of the costs. To train the LSTM regressor, sequence-independent values should be studied. However, the LSTM 

showed adequate accuracy in prediction of CO2 concentrations, so the trained LSTM can be used to predict the future CO2 

concentration and applied to efficient CO2 enrichment for photosynthesis enhancement in greenhouses. In this study, the 

greenhouse CO2 concentrations could be relatively well predicted. To ensure that the trained LSTM is applicable to all 

cultivation conditions, the model should be applied to and verified at other cultivation sites.
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